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Recent trends in microRNA research into breast cancer
with particular focus on the associations between
microRNAs and intrinsic subtypes
Sasagu Kurozumi1,2, Yuri Yamaguchi3, Masafumi Kurosumi4, Miki Ohira3, Hiroshi Matsumoto1 and
Jun Horiguchi2

MicroRNAs (miRNAs) are short non-coding RNAs that regulate the function of target genes at the post-transcriptional phase.
miRNAs are considered to have roles in the development, progression and metastasis of cancer. Recent studies have indicated
that particular miRNA signatures are correlated with tumor aggressiveness, response to drug therapy and patient outcome in
breast cancer. On the other hand, in routine clinical practice, the treatment regimens for breast cancer are determined based on
the intrinsic subtype of the primary tumor. Previous studies have shown that miRNA expression profiles of each intrinsic
subtypes of breast cancer differ. In hormone receptor-positive/human epidermal growth factor receptor 2 (HER2)-negative breast
cancer, miRNA expressions are found to be correlated with endocrine therapy resistance, progesterone receptor expression and
heat shock protein activity. Some miRNAs are associated with resistance to HER2-targeted therapy and HER3 expression in
HER2-positive breast cancer. In triple-negative breast cancer, miRNA expressions are found to be associated with BRCA
mutations, immune system, epithelial–mesenchymal transition, cancer stem cell properties and androgen receptor expression.
As it has been clarified that the expression levels and functions of miRNA differ among the various subtypes of breast cancer,
and it is necessary to take account of the characteristics of each breast cancer subtype during research into the roles of miRNA
in breast cancer. In addition, the discovery of the roles played by miRNAs in breast cancer might provide new opportunities for
the development of novel strategies for diagnosing and treating breast cancer.
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INTRODUCTION
Breast cancer exhibits biological heterogeneity in terms of its prognosis
and sensitivity to anti-cancer agents. Numerous studies are currently
being conducted in an attempt to identify markers of cell growth and
differentiation, which are involved in tumor formation and progres-
sion, in breast cancer.1

Breast cancer has recently been classified into several intrinsic
subtypes, such as the luminal A, luminal B, human epidermal growth
factor receptor type 2 (HER2)-enriched, basal-like, claudin-low and
normal-like subtypes, based on semi-unsupervised gene expression
array analyses.2 In routine clinical practice, these intrinsic subtypes are
identified based on a combination of immunohistochemical analyses
of estrogen receptor (ER), progesterone receptor (PgR) and HER2
expression, and the Ki67 labeling index (Figure 1), and the following
practical classification of intrinsic subtypes was proposed at the
St Gallen consensus meeting of breast cancer: luminal A-like type
(ER-positive and/or PgR-positive, HER2-negative, low proliferation
and low tumor burden), luminal B-like type (ER-positive and/or PgR-
positive, HER2-negative, high proliferation and high tumor burden),
hormone receptor-positive and HER2-positive type, hormone

receptor-negative and HER2-postive type and triple-negative (TN)
type (hormone receptor-negative and HER2-negative)3,4 (Table 1).
This classification has provided valuable information about the tumor
biology of each subtype and facilitates the appropriate selection of
hormonal, chemotherapeutic and HER2-targeting agents during the
treatment of breast cancer. The Cancer Genome Atlas Network
indicated that the biologic finding of breast cancer subtypes caused
by different subsets of genetic and epigenetic abnormalities.1

On the other hand, microRNAs (miRNAs) are small (19–22 bases
in length) non-coding RNAs, and negatively regulate protein-coding
gene expressions by promotion of mRNA degradation or inhibition of
translation.5 In breast cancer, various miRNAs have been shown to be
deleted or to exhibit downregulated or upregulated expression.
Recently, it has been demonstrated that aberrational miRNAs targeting
to several cancer-related genes induce cancer initiation, progression,
metastasis or drug resistance. In breast cancer, some miRNAs have
been shown to upregulate the functions of oncogenes while others
stimulate tumor suppressors.6–11 Previous studies have demonstrated
that the miRNA expression profiles of each intrinsic subtype of breast
cancer differ.12,13 In the present review, reports of miRNA research as
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to the relationship between miRNA expressions and breast cancer
subtypes were searched using MEDLINE system and we focus on
recent findings regarding the associations between miRNA expressions
and the various subtypes of breast cancer.

BIOGENESIS AND FUNCTIONS OF miRNA IN BREAST CANCER
miRNA was initially reported by Lee et al. in 1993,14 and it was
identified as a short non-coding RNA with a function of mediating
post-transcriptional gene silencing. More than 2500 human miRNAs
have subsequently been recorded in the miRBase, a searchable
database of published miRNAs.15 miRNAs mediate mRNA degrada-
tion and inhibit translation. Most miRNA genes are transcribed by
RNA polymerase II in the nucleus, and primary miRNAs

(pri-miRNAs) are capped, spliced and polyadenylated.16,17

Pri-miRNAs are cleaved by a microprocessor composed of the
double-stranded RNase III enzyme Drosha and the double-stranded
RNA-binding protein DiGeorge syndrome critical region 8
(DGCR8).17–19 Hairpin-shaped precursor miRNAs (pre-miRNAs)
20,21 are produced from pri-miRNAs by cleavage using Drosha, and
they are exported to cytoplasm from nucleus by exportin 5,22–24 before
being further processed by Dicer, an RNase III enzyme that interacts
with the 5′ and 3′ ends of pre-miRNA.25,26 In order to exert their
effects, mature miRNAs require ribonucleoprotein complexes, such as
RNA-induced silencing complexes, to be assembled.27 The mature
single-stranded miRNAs that interact with the Argonaute proteins
(AGO1, AGO2, AGO3 and AGO4) in RNA-induced silencing

Figure 1 Immunohistochemical expression levels of the ER, PgR, HER2 and Ki67. (a) Strong ER staining was detected in the cancer cell nuclei. (b) Strong
PgR staining was detected in the cancer cell nuclei. (c) The tumor cells exhibited a high Ki67-labeling index. (d) Strong HER2 staining was detected on the
cancer cell membrane.

Table 1 Treatment-oriented classification of sub-groups of breast cancer and combined definitions proposed in St Gallen consensus meeting of
2013 and 2015

Clinical subtypes Definitions

Luminal A-like ER and/or PgR positive (⩾1%), multiparameter molecular marker ‘favorable prognosis’ if available. High ER/PgR and clearly low Ki67.
Low or absent nodal involvement, smaller tumor size

Luminal B-like ER and/or PgR positive (⩾1%), multiparameter molecular marker ‘unfavorable prognosis’ if available. Lower ER/PgR with clearly high
Ki67. More extensive nodal involvement, histological grade 3, extensive lymphovascular invasion, larger tumor size

HR-positive and HER2-positive ER and/or PgR positive (⩾1%), ASCO/CAP HER2 guidelines

HR-negative and HER2-positive ER and PgR negative (o1%), ASCO/CAP HER2 guidelines

Triple negative Negative ER, PgR and HER2

Abbreviations: ASCO/CAP, The American Society of Clinical Oncology and College of American Pathologists; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; HR, hormone
receptor; PgR, progesterone receptor.
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complexes typically bind to the 3′-untranslated regions of their
cytosolic mRNA targets. These miRNAs inhibit the translation or
promote the deadenylation and degradation of mRNA transcripts.28–30

This miRNA processing pathway is shown in Figure 2. Overexpres-
sions of oncogenic miRNAs that inhibit tumor suppressor genes are
associated with cancer development. On the other hand, reduction or
loss of expression of tumor-suppressive miRNAs induce upregulated
expression of their target oncogenes.5 In breast cancer, a number of
miRNAs have been found to have oncogenic or tumor-suppressive
effects, and miRNAs have important roles in tumor initiation, drug
resistance and metastasis.6–11 The function of miRNAs associated with
tumor development in breast cancer are shown in Table 2.

miRNA AND INTRINSIC SUBTYPES OF BREAST CANCER
Previous studies have reported that the various breast cancer subtypes
exhibit different molecular miRNA signatures.6,12,13,31 Blenkiron
et al.13 profiled 309 miRNAs in 93 breast tumors. As a result, they
detected different miRNA expression levels between the basal and
luminal subtypes. In addition, De Rinaldis et al.32 identified a
46-miRNA signature that could be used to differentiate between
breast cancer subtypes. Dvinge et al.33 also obtained similar findings in
their research. In a meta-analysis of independent trials, van Schoon-
eveld et al. described various subtype-specific miRNAs. Specifically,
let-7c, miR-10a and let-7f were found to be associated with the
luminal A type; miR-18a, miR-135b, miR-93 and miR-155 were
shown to be associated with the basal type; and miR-142-3p and
miR-150 were demonstrated to be associated with the HER2 type.12

Moreover, 453 miRNAs in 29 early-stage breast cancer tumors were
profiled, and signatures that could be used to accurately predict the
ER, PgR and HER2 status of breast tumor were identified. In addition,
miR-342 was expressed most strongly in the ER-positive/HER2-
positive tumors.34 MiR-342 influences the ER expression level and
the response to tamoxifen.35,36 MiR-10b, miR-26a and miR-153 have

been suggested to be potential biomarkers of triple-negative breast
cancer (TNBC).37 miRNAs associated with each subtype of breast
cancer are shown in Table 3.

miRNA IN HORMONE RECEPTOR-POSITIVE/HER2-NEGATIVE
BREAST CANCER
Relationship between miRNA and PgR expression
Approximately 70% of breast cancers are ER-positive and/or
PgR-positive. The ER is known to have important roles in the
development and progression of breast cancer. It controls the
expression of a wide variety of genes and proteins through genomic
and non-genomic pathways. In the genomic pathway, estrogen signals
are mediated through the ER, which functions as a transcription factor
for the signals’ target genes. ER is also activated by signal crosstalk
between estrogen and growth factors such as epidermal growth factor
and insulin growth factor-1 via transmembrane receptor phosphoryla-
tion. PgR expression is induced by the ER, and PgR-related signaling
pathways have important roles in the induction, progression and
maintenance of neoplastic phenotype in breast cancer. Recent studies
have suggested that PgR status needs to be considered when discussing
the relative-risk reductions expected from endocrine treatments in
individual patients. Prat et al.38 reported that a PgR tumor cell
positivity cutoff value of 420% was a significant predictor of the
survival differences within luminal-type breast cancers defined by their
molecular classification. In addition, we revealed that the extent of PgR
expression is a potent prognostic indicator that can aid evaluations
of the long-term prognosis of ER-positive/HER2-negative breast
cancer.39 PgR and Stat5a are potent prognostic factors of breast
cancer and predict the responsiveness of tamoxifen therapy. Finlay-
Schultz et al.40 suggested a mechanism by which the progesterone-
triggered loss of miR-141 facilitates breast cancer cell de-differentiation
through the deregulation of PgR and Stat5a. Furthermore, Lowery
et al.34 revealed that four miRNAs (miR-520g, miR-377, miR-527-
518a and miR-520f-520c) have the ability to predict PgR status with
great accuracy in breast cancer. MiR-29 and miR-513a-5p also
influence PgR expression in breast cancer.41

Efficacy of endocrine therapy and miRNA in hormone
receptor-positive/HER2-negative breast cancer
miRNAs have important roles in endocrine resistance, and some
studies have attempted to identify miRNAs that contribute to the
clinical benefits of hormonal therapies. The expression of miR-221 in
breast cancer has been identified as a good prognostic marker and is
associated with ER positivity and lymph node negativity.42 However,
the miR-221/222 cluster is associated with tamoxifen resistance in
breast cancer cells.43,44 Miller et al.45 reported that miR-221/222
expressions were upregulated in endocrine therapy-resistant luminal-
type breast cancer cells. MiR-221/222 are negative regulators of
p27kip1, a cell cycle inhibitor and tumor suppressor,46–50 and
upregulated expressions of these miRNAs and significant reductions
in p27kip1 levels have been reported in tamoxifen-resistant breast
cancer cells; therefore, miR-221/222 might regulate tamoxifen
sensitivity via the direct targeting of p27kip1.51,52 Pichiorri et al.53

found that miR-221/222 expressions were modulated by nucleolin at
the post-transcriptional level. Recently, it has been indicated that these
miRNAs induce resistance to the selective ER downregulator, and this
was caused by the activation of β-catenin and the repression of
transforming growth factor-β-mediated growth inhibition.54 Lu et al.55

demonstrated that miR-221, miR-222 and miR-181b directly target
tissue inhibitor of metalloproteinases (TIMP)3, and MCF7 cells that
had been subjected to TIMP3 knockdown were found to be able to

Figure 2 Biogenesis and function of microRNA (miRNA). miRNA genes are
transcribed by RNA polymerase II (Pol II) in the nucleus to generate primary
miRNA (pri-miRNA). Pri-miRNAs are cleaved by a microprocessor composed
of a double-stranded RNase III enzyme (Drosha) and the double-stranded
RNA-binding protein DiGeorge syndrome critical region 8 (DGCR8). Drosha
cleaves pri-miRNA into hairpin-shaped precursor miRNA (pre-miRNA). The
pre-miRNAs are then exported from the nucleus to the cytoplasm by exportin
5, before being further processed by Dicer, an RNase III enzyme
that interacts with the 5′ and 3′ ends of pre-miRNA. In order to exert
their effects, mature miRNA require ribonucleoprotein complexes, such as
RNA-induced silencing complexes (RISCs), to be constructed. Mature
single-stranded miRNA interact with the Argonaute proteins (AGO) in RISCs
to regulate their target genes.
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grow in the presence of tamoxifen. Furthermore, miR-30c has been
identified as an independent predictor of the response to tamoxifen
treatment and has been shown to have a role in increasing
progression-free survival.56 MiR-301 expression was recently found
to be stronger in tumors than in normal tissue, and patients who
suffered recurrence after tamoxifen treatment exhibited higher
miR-301 levels than those who did not suffer recurrence.57 MiR-375
influences the response to tamoxifen treatment by directly targeting
metadherin. The loss of metadherin has been shown to restore
sensitivity to endocrine therapy and is correlated with disease-free
survival in ER-positive patients.58 He et al.36 demonstrated that
miR-342 expression was positively correlated with ER expression
and also found that the introduction of miR-342 into estrogen-
dependent breast cancer cell lines enhanced their sensitivity to
tamoxifen-induced apoptosis. In agreement with this, Cittelly et al.59

reported that the downregulation of miR-342 expression was asso-
ciated with tamoxifen resistance. miRNAs are also associated with
resistance to aromatase inhibitors.60 Masri et al.61 suggested that
miR-128a modulates the transforming growth factor-β signaling and
survival of letrozole-resistant cell lines. miRNAs expression profiling
before and after letrozole treatment reveal post-treatment increases in
let-7f expression in both the preclinical and clinical settings.62

miRNA and heat shock proteins in hormone receptor-positive/
HER2-negative breast cancer
Heat shock protein (HSP) reveals various effects on multiple
oncogenic signaling pathways. The function of HSP is generally
considered to be ATP-dependent protein chaperoning. In addition,
HSP also has critical roles in post-translational level, which maintains
proteins in their correct configurations to ensure their stability and
protect carcinoma cells from their apoptosis.63 Overexpressed HSP70
increases levels of unfolded and denatured proteins in stressful cellular
conditions. Therefore, HSP70 is considered to be important to
maintain the functions of several housekeeping genes. Yiu et al.64

suggested that the downregulation of HSP70 expression was correlated
with the treatment response to neoadjuvant endocrine therapy in
ER-positive postmenopausal breast cancer patients. The carboxyl
terminus of the Hsc70-interacting protein (CHIP) was originally
identified as a co-chaperone of E3 ligase, which ubiquitinates
misfolded or abnormal proteins presented by molecular chaperones
such as HSP70.65 This protein is considered to be a U-box-type
ubiquitin ligase that induces the ubiquitination and degradation of its
substrates, which include several oncogenic proteins.66,67 We pre-
viously demonstrated that strong CHIP expression is correlated with
ER positivity, PgR positivity and HER2 negativity, and identified CHIP
expression as a potent prognostic factor in postmenopausal patients
with invasive breast cancer.68 Ozgur et al.69 reported that two
miRNAs, miR-29a and miR-193b, are associated with breast cancer
through their contact with HSP70.
On the other hand, HSP90 is correlated with breast carcinogenesis.

HSP90 induces protein folding and refolding under stressful cellular
conditions.70 In aromatase inhibitor-resistant breast cancer, growth
factor signaling pathways such as insulin-like growth factor-I receptor
and HER2-mediated signaling pathways have important functions in
tumor growth. Therefore, these pathways have a key role in resistance
to aromatase inhibitors and also act as HSP90 client proteins.71 Wong
et al.72 suggested that HSP90 inhibitors are effective against aromatase
inhibitor-resistant breast cancers. HSP90 is associated with various
miRNAs, and miRNA-based inhibition of HSP90 is easier to achieve
than miRNA-based HSP70 inhibition.69

Table 2 The microRNAs associated with tumor development in breast
cancer

miRNAs Targets Ref. miRNAs Targets Ref.

Cellular proliferation Drug resistance
miR-146a NF-kB 154 miR-328 ABCG2 155

miR-146b NF-kB 154 miR-451 ABCB1 156

miR-106b p21,
CDKN1A

157 miR-326 ABCC1 158

miR-128 Bmi-1 159 miR-487a ABCG2 160

miR-17-5p CCND1 7 miR-221 p27Kip1 45

miR-20a CCND1 7 miR-222 p27Kip1 45

miR-21 PTEN 7 miR-30c TWF1, IL-11 161

let-7 Ras 7 miR-31 PKCepsilon 162

Invasion and metastasis
miR-146a EGFR 163 miR-206 CyclinD2 164

miR-146b EGFR 163 miR-335 SOX4, TNC 165

miR-125a HuR 166 miR-96 FOXO1 167

miR-125b HuR 166 miR-29b VEGFA,
ANGPTL4, LOX

168

miR-182 FOXO1 167 miR-27a FOXO1 167

miR-10b HOXD10 169 miR-708 NNAT 170

miR-126 VEGF 165

Abbreviation: Ref., References.

Table 3 The microRNAs associated with each molecular subtypes of
breast cancer

Micro RNAs

Clinical subtypes Over-expression Ref. Under-expression Ref.

Luminal A-like (HR-positive
and HER2-negative and
low proliferation)

let-7c, let-7f 13 miR-206 164

miR-10a 13 miR-15b 171

miR-191 164 miR-107 171

miR-26 164 miR-103 171

miR-190b 172

miR-99a 171

miR-130 171

miR-126 171

miR-136 171

miR-146b 171

miR-100 171

Luminal B-like (HR-positive
and HER2-negative and
high proliferation)

miR-342 34 miR-100 171

miR-15b 171 miR-99a 171

miR-107 171 miR-130 171

miR-103 171 miR-126 171

miR-136 171

miR-146b 171

HR-negative and
HER2-positive

miR-142-3p 13 miR-125a/b 171

miR-150 13

Triple negative miR18a/b 13 miR-29 172

miR-135b 13 miR-190b 172

miR-93 13

miR-155 13

miR-17-92 172

Abbreviations: HR, hormone receptor; Ref., References.
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miRNA IN HER2-POSITIVE BREAST CANCER
Efficacy of HER2-targeted therapy and miRNA in HER2-positive
breast cancer
Trastuzumab, a humanized monoclonal antibody to HER2 protein,
binds to the extracellular domain of HER2 molecules in the cell
membrane of carcinoma cells for suppression of HER2 signaling and
inhibition of cell proliferation by arresting the cell cycle during the G1
phase. In addition, antibody binding to HER2 leads to antibody-
dependent cell-mediated cytotoxicity triggering the carcinoma cell
death by immune cells. The treatment strategies for breast cancer
changed markedly after trastuzumab was approved as a treatment for
HER2-overexpressing breast cancer by the US Food and Drug
Administration in 1998. Moreover, other HER2-targeting therapeutic
agents such as lapatinib,73 pertuzumab74 and ado-trastuzumab
emtansine (T-DM1)75 have been approved as treatments for HER2-
overexpressing breast cancer. Jung et al.76 suggested that the plasma
miR-210 level is useful for predicting and/or monitoring the ther-
apeutic response to treatments involving trastuzumab, and the
upregulation of miR-21 expression has been reported to be associated
with trastuzumab resistance in HER2-positive breast cancer.77 In
agreement with the latter study, Nishida et al.78 suggested that
miR-125a-5p directly targets HER2. MiR-125a-5p was previously
shown to strongly suppress the proliferation of gastric cancer cells,
and these growth inhibitory effects were enhanced when miR-125a-5p
was used in combination with trastuzumab. Ichikawa et al. also found
that miR-26a and miR-30b mediate the effects of trastuzumab.79,80

Furthermore, Iorio et al.81 demonstrated that miR-205, which targets
HER3 and impairs the downstream Akt-mediated survival pathway,
not only has an oncosuppressive role in breast cancer, but also
increases its responsiveness to lapatinib and gefitinib.

Relationship between miRNA and HER3
HER2 is a member of the ErbB-protein family and contributes
to a signaling network that operates in the cellular membrane.82

HER2-containing dimers have been shown to enhance downstream
signaling.82,83 As the ligand of HER2 is not discovered, HER2
activation is thought to be strictly dependent on trans-interactions
with other members of the HER family such as HER3.81,84 HER3 has
an impaired kinase domain that lacks catalytic function. However,
when it forms a heterodimer with a signaling-competent HER family
member, HER3 is transphosphorylated and acts as a signaling
platform.85

Several studies have demonstrated that HER3 is frequently
co-expressed with HER2 in breast cancer, and HER3 has a role in
HER2-mediated breast carcinogenesis.86,87 Iorio et al.81 suggested
that the reintroduction of miR-205 into SKBr3 cell increases the
responsiveness of lapatinib (tyrosine kinase inhibitors) avoiding
HER3-mediated resistance and restoring potent proapoptotic activity.
Wang et al.88 predicted that miR-205 binds to the 3′ untranslated
regions of HER3 mRNA, and the upregulation of miR-205
reduced HER3 protein expression. Scott et al.89 suggested that the
downregulation of HER2 and HER3 protein expression via the
overexpression of miR-125a and miR-125b influences the critical
features of the malignant cell phenotype, such as proliferative growth,
motility and invasiveness in vitro. Wang et al. and Lyu et al. also
demonstrated that the overexpression of HER2 promotes HER3
expression via a mechanism involving miR-125a, miR-125b and
miR-205 in vivo.90,91 Bischoff et al. found that miR-148b, miR-149,
miR-326, and miR-520a-3p directly reduced HER3 mRNA and
protein levels.85 Yan et al.92 provided insights into the role of the
miR-143/145 cluster as a tumor suppressor in breast cancer; that is,

they suggested that it inhibits HER3 translation in vivo. Yu et al.93

suggested that miR-148a attenuates angiogenesis by inhibiting HER3.

miRNA IN TRIPLE-NEGATIVE BREAST CANCER
Molecular subtypes of triple-negative breast cancer
Lehmann et al. revealed that TNBC can be classified into at least six
distinct molecular subtypes with differing biological characteristics
based on mRNA profiling. These subtypes include two basal-like types
(BL1 and BL2), an immunomodulatory type (IM), a mesenchymal
type (M), a mesenchymal stem-like type (MSL) and a luminal
androgen receptor type (LAR). The BL1 subtype exhibits higher levels
of the components of cell division and DNA damage response
pathways, including the BRCA pathway. The BL2 subtype has a
unique genetic background that involves growth factor signaling
(epidermal growth factor, nerve growth factor, MET, Wnt/β-catenin
and insulin-like growth factor 1 receptor pathways). The IM subtype
displays higher immune cell and immune signal transduction pathway
activity. The M and MSL subtypes are both characterized by higher
expression levels of the genes involved in motility, the extracellular
matrix, cell differentiation pathways and epithelial-to-mesenchymal
transition (EMT). Furthermore, the MSL subtype demonstrates
elevated cancer stem cell (CSC)-associated gene expression. The
LAR subtype is associated with high androgen receptor (AR)
expression levels.94,95 The miRNA expression profiles of these
molecular subtypes of TNBC might differ.

Relationship between miRNA and BRCA mutations
The BL subtype of breast cancer is characterized by TNBC and the BL
identified by expressions of CK5/6, CK14 and EGFR. Garcia et al.
reported that the highest levels of miR-146a and miR-146b-5p were
found in BL in vitro and TNBC patients.96 On the other hand, the
BRCA1/2 gene is a well-characterized cancer susceptibility gene that is
associated with hereditary breast and ovarian cancer.97,98 Shen et al.99

suggested that genetic polymorphisms in the miR-146a gene might be
associated with young age in familial cases of breast or ovarian cancer.
The basal phenotype have a strong relationship to BRCA1 mutations,
and 80–90% of BRCA1-abnomality expressing cancers exhibiting this
phenotype.100 Yan et al.101 reported that sporadic and BRCA1-positive
BL subtype cancers demonstrate grade-independent miRNA expres-
sion profiles. Furthermore, Shen et al.102 showed that miR-17 binds to
BRCA1 mRNA. Chang et al.103,104 discovered that BRCA1 has a role in
the epigenetic control of the oncogenic miRNA miR-155. Crippa
et al.105 reported that miR-342 regulates BRCA1 expression by
modulating the expression of inhibitor of differentiation 4, which in
turn negatively regulates BRCA1 expression in breast cancer. Moskwa
et al.106 suggested that miR-182 downregulates BRCA1 expression and
found that the manipulation of miR-182 expression in breast cell lines
affected their sensitivity to poly-ADP ribose polymerase (PARP) 1
inhibition. Tanic et al.107 recently investigated miRNA classifiers in an
attempt to predict the BRCA germline mutation status of routinely
available formalin-fixed, paraffin-embedded breast tumor biopsy
samples based on 6 types of miRNA (miR-142-3p, miR-505,
miR-1248, miR-181a-2, miR-25 and miR-340).

Relationship between miRNA and the tumor-associated immune
system
The immunity affects all phases of tumor growth from initiation to
progression and dissemination. Tumor-infiltrating lymphocytes (TILs)
are mononuclear immune cells that infiltrate tumor tissue.108 Several
retrospective studies have suggested the possibility of TILs as
prognostic factor as well as predict factor of chemotherapy in a part
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of breast cancer.109 In the Breast International Group 2–98 trial,
retrospective–prospective analyses detected a positive correlation
between the number of TILs and survival in TNBC.110 The presence
of TILs is also associated with increased pathological complete
response (pCR) rates. The first randomized controlled trial indicated
that a relationship exists between increased numbers of TILs and pCR
rates.111 Podshivalova et al.112 suggested that miRNA have an
important role in T-lymphocyte activation and also described a
mechanism for regulating the impact of miRNA. Jasinski-Bergner
reported that natural killer cell and CD8-positive T-lymphocyte
ligands are both regulated by the number of miRNAs.113 Therefore,
miRNA might contribute to the immune system in breast cancer.
Rodriguez et al.114 suggested that bic/miR-155 has a role in regulating
homeostasis in the immune system in cancer patients. Zonari et al.
reported that miR-155 increases tumor growth by the activation of
tumor-associated macrophages in breast cancer. They also found that
miR-155 reveals antitumoral effect by acting as an integral effector of
immunosurveillance, thereby inhibiting the early stages of breast
cancer development.115

On the other hand, programmed cell-death protein 1 and pro-
grammed cell death 1 ligand 1 (PD-1/PD-L1) eliminate T-cell
activation in various forms of cancer.116 The prospective trials to
evaluate the efficacy of antibodies to PD-1/PD-L1 are undergoing in
patients with TNBC. These studies may suggest the potential of
immune checkpoint inhibitors targeting PD-1/PD-L1 axis in patients
with TNBC.117,118 Iliopoulos et al.119 demonstrated that miR-21
expression was upregulated by ovalbumin stimulation in T cells and
also that the inhibition of PD-1 increased miR-21 expression. Chen
et al.120 suggested that a relationship exists between miR-200 and
PD-L1 expression in human lung cancer. Furthermore, previous
studies have indicated that a relationship exists between these immune
checkpoints and a number of miRNA; however, these relationships
have not yet been elucidated in detail. Further studies are needed in
order to determine the relationships between miRNA and the immune
system in breast cancer.

Relationship between miRNA and EMT
miRNA might control tumor cell migration caused by EMT and
suppress the metastatic potential of breast cancer. Smad and Twist
have recently been shown to favor the metastatic dissemination of
cancer cells through their abilities to induce EMT. Twist is thought to
increase the invasiveness of cancer cell and upregulate miR-10b
expression in vitro.121,122 Moreover, the repression of miR-10b
decreases the presence of Twist in the bone metastasis of breast
cancer.123 These findings suggest that Twist induces the formation of
bone metastasis through a miR-10b-dependent mechanism in breast
cancer. Snail is a zinc finger transcriptional repressor, the pathological
expression of which has been linked to cancer cell EMT programs and
the induction of tissue invasive activity.124–127 MiR-34a reduces the
invasiveness of breast cancer cells by repressing EMT through the Snail
pathway.128 Gregory et al. found that all five members of the
miRNA-200 family (miR-200a, miR-200b, miR-200c, miR-141 and
miR-429) and miR-205 was markedly downregulated in cells that had
undergone EMT in response to ectopic protein tyrosine phosphatase
expression. The enforced expression of members of the miR-200
family were also sufficient to prevent transforming growth factor-β-
induced EMT.129 At the cellular level, one of the key events associated
with miR-103/107 is the induction of EMT via the downregulation of
miR-200 expression.130 Song et al. found that miR-22 triggered EMT,
enhanced invasiveness, and promoted metastasis in mouse xenografts.
They also demonstrated that miR-22 induced metastatic potential by

silencing miR-200 through the targeting of ten-eleven translocation
proteins, which are a family of methylcytosine dioxygenases.131

Moreover, Park et al.132 showed that these miRNA cooperatively
regulated the expression of the E-cadherin transcriptional repressors
ZEB1 and ZEB2, which have previously been implicated in EMT and
tumor metastasis. Jiang et al. reported that miR-29 mediated EMT and
promoted metastasis in breast cancer.133,134

Cancer stem cell-related miRNA
Recent studies have suggested that miRNA contribute to tumor
initiation by regulating the properties of CSC, including their self-
renewal, de-differentiation and drug resistance.5,9,135 Han et al.136

demonstrated that the formation of CSC-like cells that were
undergoing EMT was associated with the overexpression of hypoxia-
inducible factor 1α and that this process was regulated by miR-21.
Let-7 has an important role to regulate the function of CSC, because
the reduction of let-7 expression inhibits differentiation and maintains
proliferation. Therefore, let-7 is a potential molecular marker of CSC
and might be a therapeutic target for anti-cancer therapy.137,138 Several
recent studies have suggested that miR-200 family members and their
target mRNAs are associated with the properties of CSC. Shimono
et al.139 revealed that the expression levels of miRNA-200c-141,
miR-200b-200a-429 and miR-183-96-182 were consistently down-
regulated in CSC of breast cancer. Lim et al.140 suggested that the
downregulation of miR-200 may induce the conversion of mammary
epithelial cell to a stem cell-like phenotype in breast cancer. Song
et al.131 reported that miR-22 modified a crucial epigenetic change,
promoted EMT, and induced breast cancer stemness. Takahashi
et al.141 identified miR-27b as a key regulator of the generation of
breast cancer cells with CSC properties.

Relationship between miRNA and the LAR type
The AR is a nuclear receptor that has a role in the complex network
of signaling pathways that regulate cell proliferation in breast
cancer.142,143 In breast cancer, some studies demonstrated that
androgenic effects mediated by AR stimulate tumor growth, while
other studies suggested that AR-mediated effects inhibit the growth of
breast cancer cells.144,145 Therefore, the mechanisms responsible for
the loss of AR expression during breast carcinogenesis remain unclear.
Although the loss of AR expression is associated with high nuclear
grade and a negative ER, PR and HER2 expression status in breast
cancer, the significance of AR expression in human breast cancer has
been examined in recent studies into TNBC.146,147 A number of
studies have proposed that a correlation exists between specific
miRNA and AR expression. The expression levels of several
androgen-inducible miRNA (miR-21, miR-101, miR-125b, miR-221
and miR-222) have been well-characterized in prostate cancer cells,
and these miRNA have been found to be involved in the progression
to androgen independence.148–152 MiR-21 has an androgen-responsive
element, and is directly upregulated by androgens in prostate cancer
cell lines. In addition, miR-21 was expressed at higher levels in
AR-positive than in AR-negative prostate cancer cells.148,149,151 The
roles of miRNA in the regulation of AR expression in breast cancer
have been investigated. Nakano et al.153 demonstrated that miR-363 is
an androgen-inducible miRNA in breast cancer. However, at present
there is limited evidence that a relationship exists between the AR and
miRNA in breast cancer.

CONCLUSIONS
The present review highlighted recent findings regarding the role of
miRNA in breast cancer. Previous studies have revealed that breast
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cancer comprises several intrinsic subtypes with different molecular
profiles, and several miRNAs have important roles to determine and
regulate such subtypes. The profiling of miRNA expressions in breast
cancer and clarifying molecular mechanisms of breast cancer-specific
miRNAs are important future topics for basic and clinical research of
breast cancer. The elucidation of the roles played by miRNA in breast
cancer has provided new opportunities for the development of
strategies for the diagnosis and treatment of cancer. Further biological
research into the ability of novel agents to regulate miRNA expression
is warranted, and miRNA are expected to become a therapeutic target
of treatments for breast cancer.
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